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Abstract

The radiative heat transfer between two concentric spheres separated by an absorbing, emitting, and isotropically scattering gray med-
ium is investigated by using the finite volume method (FVM). Especially, a mapping that simplifies the solution of spherically symmetric
radiative heat transfer problems is introduced, thereby, the intensity depending on spatial one-dimension and angular one-dimension is
transformed into spatial two-dimensional one. By adopting this mapping process, angular redistribution, which appears in such curvi-
linear coordinates as cylindrical or spherical ones, is treated efficiently without any artifice usually introduced in the conventional discrete
ordinates method (DOM). After a mathematical formulation and corresponding discretization equation for the radiative transfer equa-
tion (RTE) are derived, final discretization equation is introduced by using the directional weight, which is the key parameter in the FVM
since it represents the inflow or outflow of radiant energy across the control volume faces depending on its sign. The present approach is
then validated by comparing the present results with those of previous works by changing such various parameters as temperature ratio
between inner and outer spherical enclosure, wall emissivity, and optical thickness of the participating medium. All the results presented
in this work show that the present method is accurate and valuable for the analysis of spherically symmetric radiative heat transfer prob-
lems between two concentric spheres.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

For many engineering applications such as droplet com-
bustion, spherical reacting systems, and droplet radiator
systems for spacecraft thermal control, spherically symmet-
ric assumption is usually made due to its geometric and the-
oretical simplicity and thereby economic benefits because it
physically describes three-dimensional phenomena with
one-dimensional procedure. Therefore, a substantial effect
has been exerted to analyze the spherically symmetric prob-
lems in the field of radiation as well as flow and heat transfer
including combustion [1–7]. During the past few decades,
numerous methods have been proposed to solve the RTE
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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between two concentric spheres separated by radiatively
active medium. Among others, while Viskanta and Crosbie
[1] considered a nonscattering, gray, and heat-generating
medium between two concentric spheres with the differen-
tial approximations, Tsai et al. [2] investigated the thermal
radiation in spherical symmetry with anisotropic scattering
and variable properties by using the DOM. Jia et al. [3]
extended the Galerkin method to investigate the radiative
heat transfer between two concentric spheres separated by
an absorbing, emitting and isotropically scattering gray
medium. Especially, while Sghaier et al. [4] and Trabelsi
et al. [5] developed a new method for the solution of the
RTE in spherical media based on the DOM with finite
Legendre transform (FLT) to model the angular derivative
term, Aouled-Dlala et al. [6] introduced the finite Cheby-
shev transform (FCT) with the DOM for the analysis of
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Nomenclature

am
I coefficient of the discretization equation in

direction m at nodal point I
Dm

i directional weight in direction m at surface i,
Eqs. (4) and (7)

Dm�1=2
i angular edge directional weight in direction

m� 1=2 at surface i, Eq. (5), i ¼ e and w

Dm
r directional weight in direction m at the surface

normal to r-direction, Eq. (7)
E;W ;N ; S east, west, north, and south neighbor control

volume of P, respectively, see Fig. 3
e;w; n; s east, west, north, and south face of the control

volume of P, respectively, see Fig. 3
~er;~eh;~eu r-, h-, u- direction base vectors, respectively
I radiative intensity, [W(m2 sr)]
Ib blackbody radiative intensity, ¼ rT 4=p, [W(m2

sr)]
~ni outward unit normal vector at face i
~nw unit normal vector at the wall towards the med-

ium
P present control volume
qR

r radial radiative heat flux, [W/m2], Eq. (1)
~r position vector
~s direction vector, ¼~er cos vþ~eh sin v sin xþ~eu

sin v cos x
wm angular weight in the DOM, Eq. (14)

Greek Symbols

am�1=2 coefficients of the angular derivative term, Eq.
(14)

b extinction coefficient, ¼ ja þ rs, [m�1]
v angular polar angle measured from the r-axis,

see Fig. 1
v0 spatial polar angle measured from the right hor-

izontal line, see Fig. 2
DA;DV surface area and volume of the control volume,

respectively
DXm discrete control angle, [sr]
ew wall emissivity
ja; rs absorption and scattering coefficients, respec-

tively, [m�1]
l direction cosine in the r-direction, ¼ cos v, see

Fig. 1
x angular azimuthal angle measured from the h-

axis

Subscripts

1,2 inner and outer spherical walls, respectively, see
Fig. 1

w wall

Superscripts

m radiation direction
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combined conductive and radiative heat transfer in concen-
tric spherical medium. Recently, Kim et al. [7] proposed the
modified DOM by adopting the control angle concepts usu-
ally used in the FVM, and demonstrated the benchmark
solutions of radiative heat transfer between two concentric
spheres filled with nongray gas and particle mixture.

As a neutron travels through a curved geometry such as
cylindrical or spherical coordinate system, the propagating
direction relative to the coordinate system is constantly
varying, even though the neutron does not physically
change its direction. This angular redistribution [8,9] makes
it difficult to handle the angular derivative term appearing
in these coordinates. To overcome this phenomenon in
spherical symmetric systems two different approaches are
suggested. The first one is the conventional artifice of Carl-
son and Lathrop [8], followed by Lewis and Miller [9], and
Tsai et al. [2] using the DOM, and Kim et al. [7] using the
modified DOM, where a recursive relation for the coeffi-
cients am�1=2 is modeled by examining the divergenceless
flow conditions. Another procedure that approximates
angular redistribution is a FLT-DOM by Sghaier et al. [4]
and Trabelsi et al. [5], where angular streaming derivative
term is derived from a series expansion of the radiative
intensity on the basis of Legendre polynomials. Recently,
Aouled-Dlala et al. [6] suggested a new finite Chebyshev
transform (FCT) to improve the performance of the
DOM when solving coupled conduction and radiation
problems in a spherical or a cylindrical media.

In this work a particular implementation of the spheri-
cally symmetric FVM is introduced that applies to the
problems of radiative heat transfer between two concentric
spherical enclosures. The medium may be absorbing, emit-
ting, and isotropically scattering. The gray gas assumption
is implicitly used throughout the present article. The contri-
butions of this work include (1) a new discretization
scheme for spherically symmetric problems in the context
of the FVM; (2) a mapping that simplifies the solution of
spherically symmetric radiative heat transfer problems,
thereby, spatial one-dimensional and angular one-dimen-
sional dependence is transformed into spatial two-dimen-
sional problems, and hence angular redistribution term is
treated without any artifice to determine the coefficients;
(3) a demonstration of performance of the present method.
In the following, mathematical formulations and corre-
sponding discretization equations for RTE are derived by
considering the mapping procedure that describes the char-
acteristics of the intensity in spherically symmetric coordi-
nates by using the FVM. The present approach is then
validated by comparing the present results with those of
previous works.
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2. Mathematical formulation

2.1. Radiative transfer equation

The geometry and coordinates for two concentric
spheres are illustrated in Fig. 1, where subscripts 1 and 2
refer to each wall boundary at r ¼ R1 and r ¼ R2, respec-
tively. v ¼ cos�1 l is the angular polar angle measured
from outward direction of r, ranging from 0 to p. For a
radiatively active medium in a spherically symmetric enclo-
sure as shown in Fig. 1, the r-directional radiative heat flux
is defined as

qR
r ¼

Z
X¼4p

Ið~r;~sÞð~s �~erÞdX ð1Þ

where Ið~r;~sÞ is the radiative intensity at position ~r in the
direction ~s. ~er is the base vector in the radial direction,
and X is the solid angle. To obtain the radiative heat flux
for a participating medium in a spherically symmetric coor-
dinate, the radiative intensity at any position~r along a path
~s through an absorbing, emitting, and isotropically scatter-
ing medium can be evaluated from the following RTE [7–
9]:

l
r2

o

or
½r2Ið~r;~sÞ� þ 1

r
o

ol
½ð1� l2ÞIð~r;~sÞ�

¼ �½jað~rÞ þ rsð~rÞ�Ið~r;~sÞ þ jað~rÞIbð~rÞ

þ rsð~rÞ
4p

Z
X0¼4p

Ið~r;~s0ÞdX0 ð2Þ

For a diffusely emitting and reflecting wall the above RTE
is subject to the following boundary condition:
Fig. 1. Schematic of two concentric spheres and its coordinate system.
Iwðrw;~sÞ ¼ ewIbðrwÞ þ
1� ew

p

Z
~nw�~s0<0

Iðrw;~s0Þ j~nw �~s0 j dX0

for ~nw �~s > 0 ð3Þ

In Eqs. (2) and (3), subscripts w and b denote the bounded
wall and black body, respectively.~nw is the unit normal vec-
tor towards medium at the spherical wall boundary, while
ja and rs are the absorption and scattering coefficients of
the medium, respectively.
2.2. Finite volume formulations

Spherically symmetric radiative heat transfer occurs
when the intensity is independent of spatial polar angle,
v0, and is therefore completely specified by spatial r-coordi-
nate and angular polar angle, v, as depicted in Fig. 1.
Thereby, the intensity Ið~r;~sÞ is expressed as Iðr; vÞ. The
intensities denoted by I1

1, I1
2, I1

3, and I1
4 shown in Fig. 2(a)

have the same radius. The spatial polar angle, v0, between
adjacent points is p=4, where v0 is measured from the right
horizontal line for convenience. The nodal points 1, 2, 3,
and 4 are located at v0 ¼ p=8, 3p=8, 5p=8, and 7p=8, respec-
tively. The intensities at point 1 in Fig. 2b have the same
radius, but are now all located at v0 ¼ p=2 with different
angular polar angles of v ¼ p=8, 3p=8, 5p=8, and 7p=8 for
intensities I1

1, I2
1, I3

1, and I4
1, respectively. Thereby it follows

that I1
m and Im

1 have the same value of r and v, where m ¼ 1,
2, 3, and 4, therefore, I1

m ¼ Im
1 can be deduced. A simple

mapping therefore exists between the intensities in Figs.
2a and b. Here, it is noted that the conventional DOM
[2,8,9] calculates intensities Im

1 in Fig. 2b, and hence suffers
Fig. 2. Schematic of the mapping for solution of spherically symmetric
radiative heat transfer between two concentric spheres. Note that Ik

j in (a)
is equal to I j

k in (b).



Fig. 4. Schematics of the control angle. The angular polar angle v is
measured from r-axis centered at O. Note that while the control angle vm

ranges from vm�1=2 and vmþ1=2, the range of angular edge control angle
vmþ1=2 is between vm and vmþ1.
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from a directional coupling that includes terms of angular
redistribution. In this FVM, however, the intensities I1

m in
Fig. 2a are computed, and hence, difficulties can be avoided
in calculating am�1=2 terms that arose from the modeling of
the angular redistribution. This new treatment of angular
redistribution term using spherically symmetric properties
of radiative intensity can be considered as an alternative
form of a novel mapping for the calculation of axisymmet-
ric radiative heat transfer given by Chui et al. [10].

To explain the finite volume formulations in spherical
enclosure, the first step is to consider the control volume
adopted in this method as shown in Fig. 3, which also shows
the radiative intensities at each nodal point P, E, W, N, and
S with the unit normal vectors~ni at face i. The control vol-
ume represented by the nodal point P is enclosed by four
control faces denoted by e, w, n, and s. This control volume
shown in Fig. 3 is a ring-shaped enclosure revolving around
the center point O. By using the spherical base vectors,
~s ¼~er cos vþ~eh sin v cos xþ~eu sin v sin x, the unit normal
vector at each face is expressed as ~ni ¼~ernr;i þ~ehnh;iþ
~eunu;i, so that ~nn ¼ �~ns ¼~er and ~ne ¼ �~nw ¼~eu. Fig. 4a
shows the mth control angle ranging from vm�1=2 to vmþ1=2,
which is typically used in the finite volume radiation meth-
ods. The angular polar angle v measured from the r-axis can
vary from 0 to p. Here, it is noted that the angular polar
angle varies as the spatial polar angle v0 changes, e.g., from
E toward W as shown in Fig. 3, i.e. spherical base vectors
for both spatial and angular coordinates, thereby, the inten-
sities at point E and W are represented by Im�1

E and Imþ1
W ,

respectively. Similarly, the intensities at face e and w are
Fig. 3. Schematic of a control volume in a spherical enclosure with P

located at the control volume center. The volume is a ring-shaped
enclosure centered at O.
expressed by Im�1=2
e and Imþ1=2

w , respectively. Here, it is
explained that the increment of angular polar angle is the
same as that of spatial polar angle, i.e. Dv ¼ Dv0. Fig. 4b
illustrates the control angle located at arbitrary point, for
example, face w with total number of control angle of
N v ¼ N v0

¼ 4. The mþ 1=2ð Þth control angle, which is
enlarged in Fig. 4b, is an edge control angle ranging from
vm to vmþ1.

Attention is now turned to the directional weights at
face i through mth control angle, Dm

i , to give further expla-
nation of the present solution method. This directional
weights are defined as the inflow or outflow of radiant
energy across the control volume face depending on its sign
as follows:

Dm
i ¼

Z mþ1=2

m�1=2

ð~s �~niÞdX ¼
Z x¼p

x¼0

Z vmþ1=2

vm�1=2

ð~s �~niÞ sin vdvdx

ð4Þ

where, unit direction vector, ~s, and outward unit normal
vector, ~ni, at face i are based on spherical coordinates ex-
plained above. Here, it is noted that the azimuthal range
of control angle x adopted is not [0, 2p] but [0,p]. The rea-
sons are explained in detail in the following.
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Based on this spatial and angular considerations, angu-
lar derivative term can be modeled by using the directional
weights, which can be obtained through the integration
process over a control volume DV and a control angle
DXm such that:Z

DX

Z
DV

o

ol
½ð1� l2ÞI �l¼lm dV dX

’ DAeDm�1=2
e Im�1=2

e þ DAwDmþ1=2
w Imþ1=2

w ð5aÞ

where

Dm�1=2
e ¼

Z vm

vm�1

sin2 vdv
Z x¼p

x¼0

sin xdx

¼ ðvm � vm�1Þ � 1

2
ðsin 2vm � sin 2vm�1Þ ð5bÞ

Dmþ1=2
w ¼ �

Z vmþ1

vm
sin2 vdv

Z x¼p

x¼0

sin xdx

¼ �ðvmþ1 � vmÞ þ 1

2
ðsin 2vmþ1 � sin 2vmÞ ð5cÞ

are the angular edge directional weights at east and west
faces and DAe ¼ DAw ¼ pðr2

n � r2
s Þ is the surface area of east

and west faces, respectively. It is necessary to emphasize that
the angular directions m� 1=2, which appeared in Fig. 4b,
are the angular edge of the control angles between
vm�1=2 < vm < vmþ1=2 and vðmþ1Þ�1=2 < vmþ1 < vðmþ1Þþ1=2,
respectively. Therefore, DAwDmþ1=2

w Imþ1=2
w and DAeDm�1=2

e

Im�1=2
e represent the inflow and outflow of the radiant energy

through these control faces since Dmþ1=2
w < 0 and Dm�1=2

e > 0
is always satisfied regardless of the spatial v0 location. Fig. 5
illustrates the angular edge directional weights, Dmþ1=2

w and
Dm�1=2

e , with Dm
n ¼ �Dm

s ¼ Dm
r for the case of N v ¼ N v0

¼ 4.
Here, it can be found that Dm�1=2

e ¼ �Dðm�1Þþ1=2
w from the

geometrical point of view as shown in Fig. 5. Also, it is noted
that D1�1=2

e ¼ DNvþ1=2
w ¼ 0 is always satisfied because the

angular polar angle v1�1=2 ¼ 0 and vNvþ1=2 ¼ p, i.e. the ray
direction~s corresponding to v1�1=2 and vNvþ1=2 is perpendic-
ular to the outward unit normal vector at the face~ne and~nw,
Fig. 5. Schematic representation of the directional weights for
N v0
¼ N v ¼ 4 case. Note that the directional weights, Dm

n ¼ �Dm
s ¼ Dm

r ,
cover n and s faces, and the angular edge directional weights, Dm�1=2

e and
Dmþ1=2

w , cover e and w faces, respectively.
respectively. Thereby, I1�1=2
e and INvþ1=2

w are not necessary to
specify for this computation.

Now, some discussions are given below about why the
integration range of azimuthal angle, x, is chosen to be
[0,p]. The first reason is to make it possible to describe
the angular radiant flux through Eq. (5). If the azimuthal
angle can vary from 0 to 2p, then Dm�1=2

e ¼ Dm�1=2
w ¼ 0. This

means that no radiant energy is transferred across the face
such as e and w in Fig. 3. The second reason is to make the
radiant energy through a face totally inflow or outflow
without introducing any other angular flux in the angular
azimuthal direction. If the azimuthal angle varies from 0
to p=2, angular flux in azimuthal direction exists, which
is not physically true in the spherically symmetric situation.
The final and important reason is to avoid introducing the
artifice to determine the angular coefficients, am�1=2, usually
adopted in the axisymmetric as well as spherically symmet-
ric DOM. The angular directional weights, Dm�1=2

e and
Dmþ1=2

w , are analogous to am�1=2 in the DOM, and easily cal-
culated from the geometric and angular grids without any
assumptions usually adopted in the conventional and mod-
ified DOM.

To obtain the discretized form of the RTE, Eq. (5a) is
substituted into Eq. (2), which is then integrated over a
control volume, DV , and a control angle, DXm, assuming
that the magnitude of intensity is constant within DV and
DXm, but allowing its direction to vary by following the
conventional practice of the FVM [10–12]. Thereby, the
following equation can be obtained:

X
i¼n;s

Im
i DAiDm

i þ ½DAeDm�1=2
e Im�1=2

e þ DAwDmþ1=2
w Imþ1=2

w �

þ bIm
P DV DXm ¼ Sm

P DV DXm ð6Þ
where DAn ¼ 4pr2
n=N v and DAs ¼ 4pr2

s=N v are the north
and south surface areas, respectively. DV ¼ 4pðr3

n � r3
s Þ=

3N v is the volume of the incremental spherical shell with in-
ner radius, rs and outer radius, rn, while DXm ¼ pðcos vm�1=2

� cos vmþ1=2Þ is the discrete solid angle. Note that the direc-
tional weight, Dm

i , in Eq. (4) which determines an inflow or
outflow of radiant energy across the control volume face
according to its sign, is evaluated as follows:

Dm
n ¼ �Dm

s ¼ Dm
r ¼

Z
X¼2p
ð~s �~erÞdX

¼ pðsin2 vmþ1=2 � sin2 vm�1=2Þ=2 ð7Þ
To relate the facial intensity, Im
i , and the edge intensity of

the angular range, Im�1=2
i , to the nodal intensity, Im

I , the fol-
lowing simple step scheme popularly used in the DOM and
FVM is introduced to ensure positive intensity:

Im
i Dm

i ¼ Im
P maxðDm

i ; 0Þ � Im
I maxð�Dm

i ; 0Þ ð8aÞ
Im�1=2

e ¼ Im
P ð8bÞ

Imþ1=2
w ¼ Imþ1

W ¼ Imþ1
P ð8cÞ
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In Eq. (8a), subscript i represents n and s, while I does the
corresponding N and S. By using this scheme, Eq. (6) can
be recast into the following general discretization equation:

am
P Im

P ¼ am
N Im

N þ am
S Im

S þ bm
P ð9aÞ

where

am
P ¼ maxðDAnDm

n ; 0Þ þmaxðDAsDm
s ; 0Þ

þ bDV DXm þ DAeDm�1=2
e ð9bÞ

am
N ¼ maxð�DAnDm

n ; 0Þ ð9cÞ
am

S ¼ maxð�DAsDm
s ; 0Þ ð9dÞ

bm
P ¼ Sm

P DV DXm � DAwDmþ1=2
w Imþ1=2

w ð9eÞ

In these formulations the last terms in Eqs. (9b) and (9e)
indicate the angular flux of radiant energy, which results
from the modeling of angular redistribution term in Eq.
(5). This completes the finite volume formulations for the
calculation of radiative heat transfer in the spherically sym-
metric enclosure.

2.3. Supplemental equations

If there exists a nonradiative volumetric heat source, Snr,
in the medium, it has to be equal to the divergence of the
radiative heat flux through the following radiation balance
equation [13]:

Snr ¼ r � qR ¼ ja 4pIb �
Z

X¼4p
IdX

� �
ð10Þ

It is noted that when the medium is in radiative equilib-
rium, i.e. Snr ¼ 0, temperature distribution of the medium
can be obtained directly from 4pIb ¼

R
X¼4p IdX.

Once the intensity field is obtained, the radiative heat
flux in the radial direction can be estimated by

qR
r ¼ 2

XNv

m¼1

ImDm
r ð11Þ

The boundary condition in Eq. (3) for a diffusely reflecting
and emitting wall can be arranged to:

Im
w ¼ ewIb;w þ

1� ew

p

X
m0 ;Dm0

w <0

Im0

w j Dm0
w j for Dm

w > 0

ð12aÞ
where

Dm
w ¼

Z
X¼4p
ð~s �~nwÞdX ð12bÞ

is the directional weight at wall. It becomes �Dm
r and Dm

r at
outer and inner spherical walls, respectively. The iterative
solution is terminated when the following convergence cri-
terion is attained:

max Im
P � Im;old

P

�� ��=Im
P

� �
6 10�6 ð13Þ

where Im;old
P is the previous iteration value of Im

P .
2.4. Solution procedure

To explain the solution procedure for spherically sym-
metric radiative heat transfer using the present method, it
is helpful to revisit Fig. 2. As explained before, the intensi-
ties in Fig. 2a completely describe the spherically symmet-
ric intensity field shown in Fig. 2b, and hence the system in
Fig. 2a is considered in this work. Following the discretiza-
tion procedure outlined earlier, an algebraic equation is
written for the intensity in horizontal direction (i.e.
v0 ¼ 0 direction) at each spatial node. Each nodal intensity
is influenced by upstream nodal intensities.

For v0 > p=2 (i.e. I1
4 and I1

3Þ the solution is marched
from the outer spherical wall to the inner wall in Fig. 2a.
The calculation starts from the N vth control volume, i.e.
the last control volume denoted by 4 in Fig. 2a. Along
the left horizontal face no boundary face value for intensity
is necessary since D

Nv0
þ1=2

w ¼ 0 as explained in the previous
section. Strictly speaking, this face is not a control volume
face, but only a symmetry face, therefore, no heat can
physically transport across this surface. Next, the solution
in the adjacent segment like the nodal point 3 can be
obtained by sweeping from outer to inner wall. Here, the
west nodal point intensity, I1

4, is used as the west face inten-
sity. This process is repeated for all segments in the left-side
quadrant, p=2 < v0 < p. The right-side quadrant, 0 < v0 <
p=2, is similarly treated except the sweep is made from
inner towards outer wall because the inner wall is in
upstream direction. Here, it is noted that this solution pro-
cess is somewhat similar to the works of Chui et al. [10],
Moder et al. [11], and Kim and Baek [12] for the calcula-
tion of the axisymmetric radiative heat transfer.
2.5. Discussion of the finite volume formulations

As discussed by Moder et al. [11], the occurrence of
angular redistribution term is determined by the choice of
which angular coordinates are held fixed during the volume
integration of streaming term, dI=ds, in the RTE. The
spherical DOM [2,7–9] adopts the spherical base vectors
as angular ones, thereby, angular redistribution terms will
occur in their formulations. From this point of view, the
current scheme for treating the angular redistribution term
expressed in Eq. (5) can be seen as an alternative form of
the works by Tsai et al. [2] and Kim et al. [7] in spherically
symmetric enclosure. In the conventional [2] and modified
DOM [7], angular derivative term is modeled following the
conventional artifice [8,9], which maintains neutron conser-
vation and permits minimal directional coupling:

o

ol
½ð1� l2ÞI �l¼lm ’

am�1=2Im�1=2 � amþ1=2Imþ1=2

wm

’ am�1=2Im�1=2 � amþ1=2Imþ1=2

DXm ð14Þ

where wm and DXm is a discrete solid angle adopted in the
conventional and modified DOM, respectively. And am�1=2
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are the coefficients for the angular derivative term to be
determined. Here, a recursive relation of the coefficients
for the angular derivative term, am�1=2, can be determined
by examining the divergenceless flow condition of Carlson
and Lathrop [8] and Lewis and Miller [9] as follows:

amþ1=2 � am�1=2 ¼ 2lmwm ¼ 2Dm
r ð15Þ

with assuming a1=2 ¼ 0 as a starting point. Then, this
expression provides a recursive relation for determining
the constants, am�1=2. Note that, since the directional
weights are analogous to the multiplication of direction co-
sine by quadrature weight in the conventional DOM, Eq.
(5) corresponds to another form of the recursive relation
[2,7–9]. In the current procedure, however, the procedure
for determining the coefficients, am�1=2 is not required from
angular and geometric considerations as discussed earlier.

The similar solution procedure in axisymmetric radia-
tion is found in Chui et al. [10], Moder et al. [11], and
Kim and Baek [12]. In their methods, the dependence of
axisymmetric intensity on two-spatial and two-angular
independent variables is transformed to a dependency on
three-spatial and one-angular variables by using the Carte-
sian base vectors for both spatial and angular treatments.
Thereby, the occurrence of angular redistribution terms
can be avoided. These axisymmetric solution procedures,
however, cannot be applied to spherically symmetric cases
because of the geometric concerns. In this work, however,
the spherical spatial and angular base vectors are used,
which is applicable to spherically symmetric cases.
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3. Results and discussion

The solution procedures presented above are applied to
pure radiative problems in two concentric spheres with var-
ious wall temperature ratio, T 2=T 1, wall emissivity, and
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Fig. 6. The effect of angular control angle on the nondimensional
radiative heat flux distribution for the case of e1 ¼ e2 ¼ 1:0, R1=R2 ¼ 0:5,
T 2=T 1 ¼ 0:5, and s2 ¼ 1:0 with Nr ¼ 50.
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Fig. 8. The effect of optical thickness on the nondimensional temperature
distribution for the case of e1 ¼ e2 ¼ 0:5, T 2=T 1 ¼ 0:5, and R1=R2 ¼ 0:5
with Nr ¼ 50 and N v0

¼ N v ¼ 12.
optical thickness. For all cases presented below, equally
spaced control volume of Nr ¼ 50 is used. The total solid
angle 2p is divided into N v directions with uniform Dv,
while spatial polar angle is discretized as N v0

¼ N v with
Dv0 ¼ Dv.

To validate the present formulations for the analysis of
spherically symmetric radiative heat transfer in two concen-
tric spheres, a benchmark problem for gray absorbing, emit-
ting, and isotropically scattering gas medium is firstly
considered. Fig. 6 shows the effect of different number of
angular control angle on the nondimensional radiative heat
flux, q� ¼ qR

r =rT 4
1, in the medium. The gray medium con-

fined between two black concentric spheres with
R1=R2 ¼ 0:5 and T 2=T 1 ¼ 0:5 is in radiative equilibrium with



Table 1
Radiative heat flux for various combinations of the boundary wall temperature ratio T 2=T 1 and emissivities e1 and e2 with R1=R2 ¼ 0:5, s2 ¼ 1:0, Nr ¼ 50,
and N v ¼ 12

T 2

T 1
e1 e2 ðr=R2Þ2ðqR

r =rT 4
1Þ

Galerkin ([3]) S12-DOM ([4]) S12 FLT-DOM ([4]) MDOM ðNv ¼ 12Þ ([7]) Present FVM ðNv ¼ 12Þ
2 1 1 �3.36557 �2.95330 �3.47938 �3.33344 �3.33625

0.5 �2.74880 �2.47264 �2.81600 �2.72734 �2.72926
0.5 1 �1.77357 �1.64680 �1.79980 �1.76474 �1.76643

0.5 �1.58604 �1.49584 �1.61580 �1.57897 �1.58034

0.5 1 1 0.21038 0.18456 0.21733 0.20834 0.20827
0.5 0.17183 0.15195 0.17281 0.17046 0.17038

0.5 1 0.11087 0.10360 0.11312 0.11030 0.11027
0.5 0.09914 0.09248 0.09977 0.09869 0.09866
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s2 ¼ bR2 ¼ 1:0. As the number of control angle increases
from N v ¼ 4 to 12, present solutions approach those of Jia
et al. [2] by the Galerkin method and Aouled-Dlala et al.
[6] by the FCT-DOM. Because further refinement of control
angle does not significantly influence the results, N v ¼ 12 is
adopted hereafter. It is noted in this radiative equilibrium
case with isotropic scattering that the intensity distribution,
the associated radiative heat flux, and medium temperature
are independent of the scattering albedo of x ¼ rs=b. There-
fore, any set of ja and rs does not alter the results as long as
s2 ¼ ðja þ rsÞR2 ¼ 1:0 is met.

In Fig. 7, the temperature distributions in the medium
are compared with the predictions based on FLT-DOM
by Sghaier et al. [4] for various wall temperature ratio of
T 2=T 1 ¼ 2:0, 1.5 and 0.5 for the case of e1 ¼ e2 ¼ 0:5,
R1=R2 ¼ 0:5, and s2 ¼ 1:0. Since only radiative heat transfer
is involved, we can see that there exists the temperature
jump at the bounded walls. It also shows that present pre-
dictions are in good agreement with those obtained by using
the FLT-DOM. Fig. 8 shows the effect of optical thickness
on the temperature profile, i.e. 1� ðT =T 1Þ4 and T=T 1. In
this case, the conditions of e1 ¼ e2 ¼ 0:5, R1=R2 ¼ 0:5,
T 2=T 1 ¼ 0:5 are used, while s2 ¼ bR2 has three different val-
ues of 0.1, 1.0, and 10.0. When the medium is optically thin,
the temperature of the medium is more uniform and the
temperature jump near the wall is more pronounced
through the far-reaching effect of radiative heat transfer.
As the optical thickness increases to 10.0, the medium has
steeper temperature gradient, which is closer to the profile
of conduction only case [14] due to heat blockage effect of
optically thick medium, hence, the temperature jump at
the walls is reduced compared to optically thinner cases.

Table 1 summarizes the results of radiative heat flux of
ðr=R2Þ2ðqR

r =rT 4
1Þ for various combinations of the wall tem-

perature ratio T 2=T 1 and boundary emissivities e1 and e2,
and compares the present results with the other solutions
by Galerkin method [3], S12 DOM and S12 FLT-DOM
[4], and MDOM [7] for the case of R1=R2 ¼ 0:5 and
s2 ¼ 1:0. It can be seen that the present results are in a
good agreement with other predictions. Finally, it is noted
that the calculation time required for all the cases demon-
strated in this article is less than 3 s on a 1.7 GHz Note-
book computer.
4. Conclusions

Application of the finite volume method has been
described for problems of radiative heat transfer between
two concentric spheres separated by an absorbing, emit-
ting, and isotropically scattering gray medium. A special
discretization procedure is introduced to transform the
dependence on spatial one-dimensional and angular one-
dimensional intensity into spatial two-dimensional one.
Thereby, angular redistribution term, which appears in
such curvilinear orthogonal coordinate as cylindrical and
spherical ones, is treated efficiently without any artifice
usually introduced in the conventional discrete ordinates
method. After a mathematical formulation and corre-
sponding discretization equation for the RTE are derived,
final discretization equation is introduced by using the
directional weight, which is the key parameter in the
FVM since it represents the inflow or outflow of radiant
energy across the control volume faces depending on its
sign. The present approach is then validated by comparing
the present results with those of previous works. All the
results presented in this work show that the present method
is accurate and valuable for the analysis of spherically sym-
metric radiative heat transfer problems between two con-
centric spheres.
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